Carl . Rodriguez Multiple Mergers of BHs

INSTITUTE

Rodriguez et al., 2018

1712.04937, PRL

Beyond effective spins

- 1. Orbital motion $t_{\rm orb} \propto r^{3/2}$
- 2. Spin & orbital-plane **precession** $t_{\rm pre} \propto r^{5/2}$
- 3. GW emission and **inspiral** $t_{\rm GW} \propto r^4$

Davide Gerosa NASA Einstein Fellow California Institute of Technology

Black Holes Runaway Growth in Globular Clusters

The Question: Are Globular Clusters the birthplaces of merging BHs—> GWs? If yes, then for ~10% of these systems (the most massive and dense) we expect to have a runaway process. Cholis, Kovetz, Kamionkowski in prep 2018

Simplified paths: Top Heavy: LIGO range LIGO range LISA range? LISA range? LISA range? LISA range?

From LIGO obs. we will be able to derive limits on the occupation fraction of IMBHs in GCs:

	Right Triangle			
Background Model	01+02	O3 (1 yr)	Design (6 yrs)	with $R(z)$
$P(M) \propto \exp(-(M/40)^2)$	470% (0.2)	38%~(3)	3.1% (47)	2.9% (53)
$P(M) \propto \exp(-(M/60)^2)$	760% (0.2)	68%~(3)	7.4% (47)	6.8% (53)
$P(M) \propto \mathcal{H}(50 - M)$	220% (0.2)	17% (3)	1.3% (47)	1.2% (53)
$P(M) \propto \exp(-M/40)$	890% (0.2)	120% (3)	19% (47)	18% (53)
$\bar{R}_{\rm BG} = 103 + 110 = 213$	470% (0.2)	41% (3)	3.4%~(47)	3.1% (53)
$\beta = -1$	430% (0.2)	34% (3)	2.8% (47)	2.7% (53)
$\beta = 1$	480% (0.2)	34% (3)	3.3%~(47)	3.1% (53)

Kovetz, Cholis, Kamionkowski, Silk, arXiv:1803.00568

Next-Gen Numerical Relativity: More Science at Less Cost Zachariah B. Etienne 💥

Reducing human expense

- Lowering learning curve
 - Excellent texts on NR & GW astrophysics
 - Texts on NR codes & algorithms?
 - Need to improve our code documentation

• Automatic code generation

- Distance Input: Eqs in Einstein-like notation
- Output: Optimized C code
- Open-source packages
 - Kranc (kranccode.org)
 - Mathematica-based
 - NRPy+ (tinyurl.com/nrpyplus)
 - Python/SymPy-based

Reducing computational expense

- Moore's Law is slowing
 - Cannot rely on continued CPU speed boosts
- Path forward = more efficient algorithms
 - Better sampling of our spacetimes
 - Beyond Cartesian AMR for CB inspirals:
 - Bispherical-like coords
 - Patches of curvilinear grids
 - Toward implicit timestepping
 - Corotation / dual frame approach
 - More scalable algorithms
 - DG methods
 - Few-patch grids

Einstein toolkit based results

M. Ruiz

- binary black hole mergers
- binary neutron star mergers

R. Haas

D. Siegel

C. Ott

- mixed binaries
- supernovae
- accretion disks
- boson stars
- cosmology

- GRMHD simulations
 - 2 free, open source, mature codes for ideal MHD simulations
 - force-free MHD code available
 - support for tabulated hot EOS
 - neutrino transport: leakage and M1 moment scheme
 - Z. Etienne

fully dynamic gravity solver

Sequences of spinning binary neutron stars: circulation & spin

Generally lines of constant \mathcal{C} , J/M^2 are distinct.

For slow rotations, they nearly coincide (up to a constant) \Rightarrow

Moving along a C = const curve is almost equivalent to moving along a $J/M^2 = const$ curve.

 $(J_{1,ql}:$ Quasi-local angular momentum of one star, J: Total angular momentum, J_{irr} : Total angular momentum of irrotational binary.)

 \Rightarrow Corotating sequences can have low spin ≤ 0.3 even for close binaries.

 \Rightarrow Constant circulation sequences preserve quasi-local spin (for low spins) similarly to single rotating stars.

$GW170817 + GRMHD \Rightarrow NS Maximum Mass^{\diamond}$

